SAE Aero Micro Design: Presentation 1

NAU Capstone 2019-2020
The Prop Dogs
Zach Simmons, Eli Perleberg, Corbin Miller
9/17/2019

Project Description: SAE Aero

- The SAE Aero Design competition provides Engineering students with real life design problems.
- There are three different competitions within SAE Aero.
 - Advanced, Regular, and Micro
- Each design has different evaluations: Design, Presentation, and MP
- The Micro design consists of a small mobile plane that can
 - Carry the highest payload fraction possible
 - Pursue the lowest empty weight possible
- Faculty Advisor: Dr. John Tester

Literature Review

Design, performance evaluation and optimization of a UAV [1]

This source evaluated aerodynamic characteristics and efficiency of the airfoil section, the wing, and the full configuration of a small uav. Provides many useful equations to be used when designing our system.

- Fox and McDonald's Introduction to Fluid Mechanics, 8th ed [2]

 A study of the laws of fluid mechanics, more precisely, boundary conditions and air foils. Will be useful when comparing prototypes to our final product.
- Design and assembly of an experimental fixed wing remote controlled glider plane [3]

This source developed an airframe and interfaced it with radio controlled remote, then embedded an on-board micro controller on the glider airframe.

State of the Art Design (SOTA): 2019 SAE Aero Micro Winner

Xi'an Jiaotong University [4]

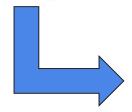
- 8th Design
- 4th Oral Presentation
- 1st Mission Performance

Design	Presentation	Mission Performance	Penalties	Total
32.5943	44.9000	57.9746	-0.0	135.469

State of the Art Design (SOTA): 2019 SAE Aero Micro American Winner

Wright State University [4]

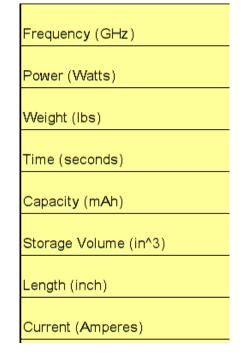
- 1st in Design
- 11th in Presentation
- 6th in Mission Performance

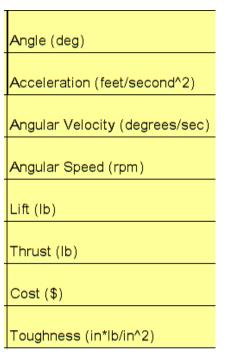

Design	Presentation	Mission Performance	Penalties	Total
41.9185	36.9000	20.2716	-0.5	98.5901

Customer Requirements (CRs)

2020 Collegiate Design Series SAE Aero Design Rules

	Customer Requirements
1	Gross Weight Limit (10 lbs)
2	In-flight radio control (2.4 GHz) w/ fail safe
3	wheeled landing gear steering mechanism
4	Payload cannot aid frame integrity
5	Payload attached w/ metal hardware
6	Electric motor/Servo
7	Red arming plug
8	3 cell 2200mAh lithium polymer battery
9	gyroscopic assist allowed
10	ASTM D1785 PVC Payload weights
11	Hand launch
12	12.125 in X 3.625 in X 13.875 in container
13	3 min assembly
14	1 min to energize, check, and launch
15	fly for 400-foot leg of a flight circuit
16	cost within budget
17	durable and robust design
18	reliable design
19	safe to operate

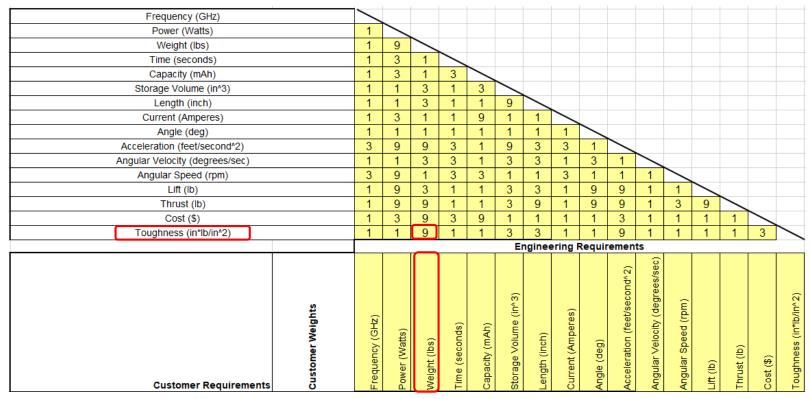

Non-ER Competition Requirements							
Aircraft Identification							
Empty CG Marking and Drawing Req.							
Non-metal propeller							
No lead							
Battery-only stored energy							
Secure linkages							
Clevis keepers							
Servo load analysis							
Battery protection from protrusions							
Gearbox allowed							
Multiple motors, props, ducted fans allowed							
Payload included in gross weight							


Engineering Requirements (ERs)

-Customer Requirements

-Determine metric to evaluate and measure each CR

-Each CR must be measured by at least 1 ER



Quality Function Deployment (QFD): CRs vs. ERs

	_	_ ,	ı	-					naince	ring F)oguie	mont						
- 1			Engineering Requirements															
	Customer Requirements	Customer Weights	Frequency (GHz)	Power (Watts)	Weight (lbs)	Time (seconds)	Capacity (mAh)	Storage Volume (in^3)	Length (inch)	Current (Amperes)	Angle (deg)	Acceleration (feet/second^2)	Angular Velocity (degrees/sec)	Angular Speed (rpm)	Lift (lb)	Thrust (lb)	Cost (\$)	Toughness (in*lb/in^2)
1	Gross Weight Limit (10 lbs)	5	1	3	9	1	1	3	3	1	1	1	1	1	1	9	3	3
2	In-flight radio control (2.4 GHz) w/ fail safe	5	9	1	1	3	1	1	1	3	1	1	3	1	1	1	3	1
3	wheeled landing gear steering mechanism	4	1	1	1	1	1	1	9	1	3	1	1	1	1	1	3	3
4	Payload cannot aid frame integrity	3	1	1	9	1	1	9	3	1	1	1	1	1	1	3	1	9
5	Payload attached w/ metal hardware	3	1	1	9	1	1	3	3	1	1	1	1	1	1	3	1	1
6	Electric motor/Servo	4	3	9	9	1	9	1	1	9	1	9	9	9	9	9	3	3
7	Red arming plug	5	1	9	1	1	1	1	1	9	1	1	1	1	9	9	1	1
8	3 cell 2200mAh lithium polymer battery	5	1	9	9	1	9	9	3	9	1	1	1	1	3	3	3	1
9	gyroscopic assist allowed	2	1	1	3	1	1	3	3	1	9	1	9	1	1	1	3	3
10	ASTM D1785 PVC Payload weights	4	1	1	9	1	1	9	9	1	1	1	1	1	1	9	1	3
11	Hand launch	4	1	9	9	З	1	1	9	1	9	9	9	9	9	9	1	3
12	12.125 in X 3.625 in X 13.875 in container	5	1	1	3	6	1	9	9	1	1	1	1	1	3	3	1	3
13	3 min assembly	4	1	1	3	9	1	3	3	1	1	1	1	1	1	1	1	9
14	1 min to energize, check, and launch	4	1	1	3	9	1	1	3	9	1	1	1	1	1	1	1	3
15	fly for 400-foot leg of a flight circuit	3	1	9	9	3	3	9	9	1	9	3	3	9	3	3	1	1
16	cost within budget	3	3	9	9	1	3	1	3	1	1	9	1	3	9	9	9	3
17	durable and robust design	4	1	3	9	1	1	3	3	1	1	3	1	1	3	1	9	9
18	reliable design	5	9	9	3	3	9	3	9	9	9	9	3	3	9	9	1	3
19	safe to operate	5	9	9	1	1	9	1	3	3	1	3	1	1	3	3	1	1
		nnical Importance	2	367	421	215	241	283	353	281	197	229	183	181	289	365	183	245
_[!	Relative Tech	nnical Importance	12	7	-	7	თ	9	4	2	13	10	15	16	ΨO	က	4	ω

QFD: ERs vs. ERs

Competition Benchmarking

SAE Aero Micro 2014-2015 NAU

Legend

В	SAE Aero	Micro 2016-2017 NAU							П
С	SAE Aero	Micro 2018-2019 NAU							П
D	SAE Aero	Micro 2018 Puerto Rico Results							П
E	SAE Aero	Micro 2019 University of Minnesota							П
F	SAE Aero	Micro 2015 Montana State University				ptable		te .	П
G	SAE Aero	Micro 2019 Xi'an Jiaotong Univ First F	Place			abda abda		ger	П
Н	SAE Aero	Micro 2019 Acharya Institute of Techr	nology	NO NO		50		90	П
I	SAE Aero	Micro 2019 Wright State Univ 6		4		•		40	П
				*-	N	(%)	*	10	4
			mer Requirements		D,B	F	H	G	
			eight Limit (10 lbs)		E,B	D	Н	G	٦
		In-flight radio control (2		0,0,0	F		Н	G	٦
		wheeled landing gear st		U,E,U,B		F	Н	G	٦
			t aid frame integrity	D.E.G.B	D,F,H			G	٦
			w/ metal hardware	E.G	D,B	Н	F	G	٦
		E	lectric motor/Servo	E.C	D,B	F	Н	G	٦
			Red arming plug	H (:	D.B	F	Н	G	٦
		3 cell 2200mAh lithi		H.G	E,B	D,F		G	┪
			opic assist allowed	С	D.B	E,F,H	G		ı
		ASTM D1785 PV	C Payload weights	E.C	D.B	F,G			1
			Hand launch	u 0	F, C	G	Е		۲
		12.125 in X 3.625 in X		H, B	F, C	G	E	I,D	4
			3 min assembly	H, B	F, C	G	E	D D	\dashv
		1 min to energize,	, check, and launch			G		D	4
		fly for 400-foot	leg of a flight circuit	F, H	C, B	A D O D E E O U U	E		4

Н

cost within budget

reliable design

safe to operate

durable and robust design

Competitor Benchmarking

A,B,C,D,E,F,G,H,I

G

F, G

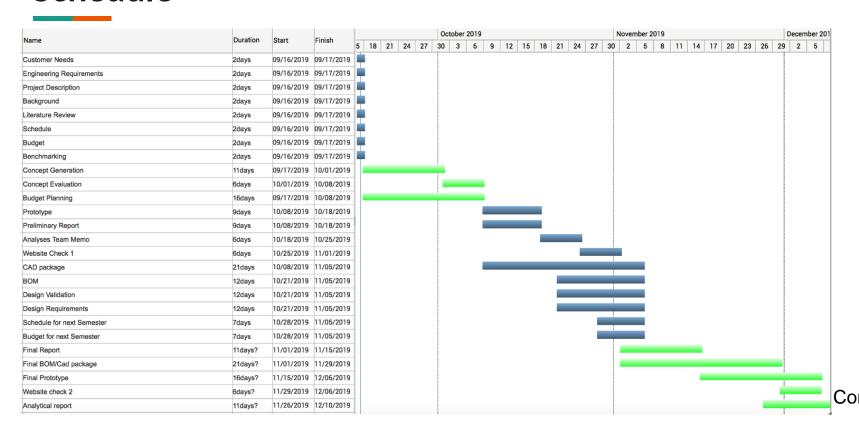
D, G, B

F. C. B


C, B

E.C

I,D


Budget

Expenses	Cost
Entry Fees	\$1050
Prototypes	\$200
Final Design Materials *	\$650
Travel	\$100

^{*}Final Design Material Expenses include; Servo motor, propeller, fuselage, airfoil/ wings, wiring, etc.

Schedule

References

- [1] S. G. Kontogiannis and J. A. Ekaterinaris, "Design, performance evaluation and optimization of a UAV," *Aerospace Science and Technology*, vol. 29, no. 1, pp. 339–350, 2013.
- [2] R. W. Fox, A. T. McDonald, and P. J. Pritchard, *Introduction to fluid mechanics*. New Delhi, India: J. Wiley, 2012.
- [3] S. Khatoon and D. Gupta, "Design and Assembly of an Experimental Fixed Wing Remote Controlled Glider Plane," *Applied Mechanics and Materials*, vol. 110-116, pp. 1582–1588, 2011.
- [4] Sae.org. (2019). [online] Available at: https://www.sae.org/binaries/content/assets/cm/content/attend/2019/student-events/aero/west/2019_microclassresults---aerowest.pdf [Accessed 16 Sep. 2019].